

 Navegación

 	
 índice

 	
 siguiente |

 	documentación de django-paypal - 0.2.5

Welcome to django-paypal’s documentation!

Django PayPal is a pluggable application that implements with PayPal Payments
Standard and Payments Pro.

Nota

These docs are for django-paypal 0.2.5 - please ensure that corresponds
to the version you are using!

Contents:

	Install

	Overview

	PayPal Payments Standard
	Using PayPal Standard IPN

	Using PayPal Standard PDT

	Using PayPal Standard with Subscriptions

	Using PayPal Standard with Encrypted Buttons

	Using PayPal Payments Pro (WPP)
	Website Payments Pro models and helpers

	Tests

	Release notes
	Version 0.2.4/0.2.5

	Version 0.2

Indices and tables

	Índice

	Índice de Módulos

	Página de Búsqueda

 Copyright 2014.
 Creado con Sphinx 1.3.1.

 Navegación

 	
 índice

 	
 siguiente |

 	
 anterior |

 	documentación de django-paypal - 0.2.5

Install

Install into a virtualenv using pip:

pip install django-paypal

Or using the latest version from GitHub:

pip install git://github.com/spookylukey/django-paypal.git#egg=django-paypal

 Copyright 2014.
 Creado con Sphinx 1.3.1.

 Navegación

 	
 índice

 	
 siguiente |

 	
 anterior |

 	documentación de django-paypal - 0.2.5

Overview

Before diving in, a quick review of PayPal’s payment methods is in order!
PayPal Payments Standard [https://developer.paypal.com/webapps/developer/docs/classic/paypal-payments-standard/integration-guide/wp_standard_overview/]
is the “Buy it Now” buttons you may have seen floating around the
internet. Buyers click on the button and are taken to PayPal’s website where
they can pay for the product.

After this point, you can get notification of the payment using either Payment
Data Transfer (PDT) or Instant Payment Notification (IPN).

For IPN, as soon as PayPal has taken payment details, it sends a message to a
configured endpoint on your site in a separate HTTP request which you must
handle. It will make multiple attempts for the case of connectivity issues. This
method has the disadvantage that the user may arrive back at your site before
your site has been notified about the transaction.

For PDT, PayPal redirects the user back to your website with a transaction ID in
the query string. This has the disadvantage that if there is some kind of
connection issue at this point, you won’t get notification. However, for the
success case, you can be sure that the information about the transaction arrives
at the same time as the users arrives back at your site.

PayPal Payments Pro allows you to accept payments on your website. It contains
two distinct payment flows: Direct Payment allows the user to enter credit card
information on your website and pay on your website. Express Checkout sends the
user over to PayPal to confirm their payment method before redirecting back to
your website for confirmation. PayPal rules state that both methods must be
implemented.

More recently, PayPal have implemented newer APIs, including “PayPal Payments
Pro (Payflow Edition)”. This is not to be confused with the “Classic” PayPal
Payments Pro that is implemented by django-paypal. “Payflow Edition” is not yet
supported by django-paypal.

See also:

	PayPal Payments Standard

	Using PayPal Payments Pro (WPP)

 Copyright 2014.
 Creado con Sphinx 1.3.1.

 Navegación

 	
 índice

 	
 siguiente |

 	
 anterior |

 	documentación de django-paypal - 0.2.5

PayPal Payments Standard

	Using PayPal Standard IPN
	Testing

	Simulator testing

	See also

	Using PayPal Standard PDT

	Using PayPal Standard with Subscriptions

	Using PayPal Standard with Encrypted Buttons
	Using PayPal Payments Standard with Encrypted Buttons and Shared Secrets

 Copyright 2014.
 Creado con Sphinx 1.3.1.

 Navegación

 	
 índice

 	
 siguiente |

 	
 anterior |

 	documentación de django-paypal - 0.2.5

 	PayPal Payments Standard

Using PayPal Standard IPN

	Edit settings.py and add paypal.standard.ipn to your INSTALLED_APPS
and PAYPAL_RECEIVER_EMAIL:

settings.py:

#...

INSTALLED_APPS = [
 #...
 'paypal.standard.ipn',
 #...
]

#...
PAYPAL_RECEIVER_EMAIL = "yourpaypalemail@example.com"

For installations on which you want to use the sandbox,
set PAYPAL_TEST to True. Ensure PAYPAL_RECEIVER_EMAIL is set to
your sandbox account email too.

	Update the database

	Create an instance of the PayPalPaymentsForm in the view where you would
like to collect money. Call render on the instance in your template to
write out the HTML.

views.py:

from paypal.standard.forms import PayPalPaymentsForm

def view_that_asks_for_money(request):

 # What you want the button to do.
 paypal_dict = {
 "business": settings.PAYPAL_RECEIVER_EMAIL,
 "amount": "10000000.00",
 "item_name": "name of the item",
 "invoice": "unique-invoice-id",
 "notify_url": "https://www.example.com" + reverse('paypal-ipn'),
 "return_url": "https://www.example.com/your-return-location/",
 "cancel_return": "https://www.example.com/your-cancel-location/",

 }

 # Create the instance.
 form = PayPalPaymentsForm(initial=paypal_dict)
 context = {"form": form}
 return render(request, "payment.html", context)

For a full list of variables that can be used in paypal_dict, see
PayPal HTML variables documentation [https://developer.paypal.com/webapps/developer/docs/classic/paypal-payments-standard/integration-guide/Appx_websitestandard_htmlvariables/].

payment.html:

...
<h1>Show me the money!</h1>
<!-- writes out the form tag automatically -->
{{ form.render }}

	When someone uses this button to buy something PayPal makes a HTTP POST to
your “notify_url”. PayPal calls this Instant Payment Notification (IPN).
The view paypal.standard.ipn.views.ipn handles IPN processing. To set the
correct notify_url add the following to your urls.py:

from django.conf.urls import url, include

urlpatterns = [
 url(r'^something/paypal/', include('paypal.standard.ipn.urls')),
]

	Whenever an IPN is processed a signal will be sent with the result of the
transaction.

The IPN signals should be imported from paypal.standard.ipn.signals. They
are:

	valid_ipn_received

This indicates a correct, non-duplicate IPN message from PayPal. The
handler will receive a paypal.standard.ipn.models.PayPalIPN object
as the sender. You will need to check the payment_status attribute and
other attributes to know what action to take.

	invalid_ipn_received

This is sent when a transaction was flagged - because of a failed check
with PayPal, for example, or a duplicate transaction ID. You should never
act on these, but might want to be notified of a problem.

Connect the signals to actions to perform the needed operations
when a successful payment is received (as described in the Django Signals
Documentation [http://docs.djangoproject.com/en/dev/topics/signals/]).

In the past there were more specific signals, but they were named
confusingly, and used inconsistently, and are now deprecated. (See v0.1.5
docs for details [http://django-paypal.readthedocs.org/en/v0.1.5/standard/ipn.html])

Example code:

from paypal.standard.models import ST_PP_COMPLETED
from paypal.standard.ipn.signals import valid_ipn_received

def show_me_the_money(sender, **kwargs):
 ipn_obj = sender
 if ipn_obj.payment_status == ST_PP_COMPLETED:
 # Undertake some action depending upon `ipn_obj`.
 if ipn_obj.custom == "Upgrade all users!":
 Users.objects.update(paid=True)
 else:
 #...

valid_ipn_received.connect(show_me_the_money)

The data variables that are returned on the IPN object are documented here:

https://developer.paypal.com/webapps/developer/docs/classic/ipn/integration-guide/IPNandPDTVariables/

You need to pay particular attention to payment_status (docs [https://developer.paypal.com/webapps/developer/docs/classic/ipn/integration-guide/IPNandPDTVariables/#id091EB04C0HS__id0913D0E0UQU]). Use
can use the ST_PP_* constants in paypal.standard.models to help.

	You will also need to implement the return_url and cancel_return views
to handle someone returning from PayPal. Note that these views need
@csrf_exempt applied to them, because PayPal will POST to them, so they
should be custom views that don’t need to handle POSTs otherwise.

For return_url, you need to cope with the possibility that the IPN has not
yet been received and handled by the IPN listener you implemented (which can
happen rarely), or that there was some kind of error with the IPN.

Testing

If you are attempting to test this in development, using the PayPal sandbox, and
your machine is behind a firewall/router and therefore is not publicly
accessible on the internet (this will be the case for most developer machines),
PayPal will not be able to post back to your view. You will need to use a tool
like https://ngrok.com/ to make your machine publicly accessible, and ensure
that you are sending PayPal your public URL, not localhost.

Simulator testing

The PayPal IPN simulator at https://developer.paypal.com/developer/ipnSimulator
has some unfortunate bugs:

	it doesn’t send the encoding parameter. django-paypal deals with this
using a guess.

	the default ‘payment_date’ that is created for you is in the wrong format. You
need to change it to something like:

23:04:06 Feb 02, 2015 PDT

See also

	Using PayPal Standard with Subscriptions

	Using PayPal Standard with Encrypted Buttons

 Copyright 2014.
 Creado con Sphinx 1.3.1.

 Navegación

 	
 índice

 	
 siguiente |

 	
 anterior |

 	documentación de django-paypal - 0.2.5

 	PayPal Payments Standard

Using PayPal Standard PDT

Paypal Payment Data Transfer (PDT) allows you to display transaction details to
a customer immediately on return to your site unlike PayPal IPN which may take
some seconds. You will need to enable PDT in your PayPal account to use it [https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/howto_html_paymentdatatransfer].

However, PDT also has the disadvantage that you only get one chance to handle
the notification - if there is a connection error for your user, the
notification will never arrive at your site. For this reason, using PDT with
django-paypal is not as well supported as IPN.

To use PDT:

	Edit settings.py and add paypal.standard.pdt to your INSTALLED_APPS. Also set PAYPAL_IDENTITY_TOKEN - you can find the correct value of this setting from the PayPal website:

settings.py:

#...
INSTALLED_APPS = [
 #...
 'paypal.standard.pdt',
 #...
]

#...

PAYPAL_IDENTITY_TOKEN = "xxx"

For installations on which you want to use the sandbox,
set PAYPAL_TEST to True. Ensure PAYPAL_RECEIVER_EMAIL is set to
your sandbox account email too.

	Update the database

	Create a view that uses PayPalPaymentsForm just like in Using PayPal Standard IPN.

	After someone uses this button to buy something PayPal will return the user
to your site at your return_url with some extra GET parameters.

The view paypal.standard.pdt.views.pdt handles PDT processing and renders
a simple template. It can be used as follows:

Add the following to your urls.py:

from django.conf.urls import url, include
...
urlpatterns = [
 url(r'^paypal/pdt/', include('paypal.standard.pdt.urls')),
 ...
]

Then specify the return_url to use this URL.

You will also need to have a base.html template with a block
content. This template is inherited by the PDT view template.

More than likely, however, you will want to write a custom view that
calls paypal.standard.pdt.views.process_pdt. This function returns
a tuple containing (PDT object, flag), where the flag is True
if verification failed.

 Copyright 2014.
 Creado con Sphinx 1.3.1.

 Navegación

 	
 índice

 	
 siguiente |

 	
 anterior |

 	documentación de django-paypal - 0.2.5

 	PayPal Payments Standard

Using PayPal Standard with Subscriptions

For subscription actions, you’ll need to add a parameter to tell it to use the
subscription buttons and the command, plus any subscription-specific settings:

views.py:

 paypal_dict = {
 "cmd": "_xclick-subscriptions",
 "business": "your_account@paypal",
 "a3": "9.99", # monthly price
 "p3": 1, # duration of each unit (depends on unit)
 "t3": "M", # duration unit ("M for Month")
 "src": "1", # make payments recur
 "sra": "1", # reattempt payment on payment error
 "no_note": "1", # remove extra notes (optional)
 "item_name": "my cool subscription",
 "notify_url": "http://www.example.com/your-ipn-location/",
 "return_url": "http://www.example.com/your-return-location/",
 "cancel_return": "http://www.example.com/your-cancel-location/",
}

Create the instance.
form = PayPalPaymentsForm(initial=paypal_dict, button_type="subscribe")

Output the button.
form.render()

 Copyright 2014.
 Creado con Sphinx 1.3.1.

 Navegación

 	
 índice

 	
 siguiente |

 	
 anterior |

 	documentación de django-paypal - 0.2.5

 	PayPal Payments Standard

Using PayPal Standard with Encrypted Buttons

Use this method to encrypt your button so sneaky gits don’t try to hack
it. Thanks to Jon Atkinson [http://jonatkinson.co.uk/] for the
tutorial [http://jonatkinson.co.uk/paypal-encrypted-buttons-django/].

	Encrypted buttons require the M2Crypto library:

pip install M2Crypto

	Encrypted buttons require certificates. Create a private key:

openssl genrsa -out paypal.pem 1024

	Create a public key:

openssl req -new -key paypal.pem -x509 -days 365 -out pubpaypal.pem

	Upload your public key to the paypal website (sandbox or live).

https://www.paypal.com/us/cgi-bin/webscr?cmd=_profile-website-cert

https://www.sandbox.paypal.com/us/cgi-bin/webscr?cmd=_profile-website-cert

	Copy your cert id - you’ll need it in two steps. It’s on the screen where
you uploaded your public key.

	Download PayPal’s public certificate - it’s also on that screen.

	Edit your settings.py to include cert information:

PAYPAL_PRIVATE_CERT = '/path/to/paypal.pem'
PAYPAL_PUBLIC_CERT = '/path/to/pubpaypal.pem'
PAYPAL_CERT = '/path/to/paypal_cert.pem'
PAYPAL_CERT_ID = 'get-from-paypal-website'

	Swap out your unencrypted button for a PayPalEncryptedPaymentsForm:

In views.py:

from paypal.standard.forms import PayPalEncryptedPaymentsForm

def view_that_asks_for_money(request):
 ...
 # Create the instance.
 form = PayPalPaymentsForm(initial=paypal_dict)
 # Works just like before!
 form.render()

Using PayPal Payments Standard with Encrypted Buttons and Shared Secrets

This method uses Shared secrets instead of IPN postback to verify that transactions
are legit. PayPal recommends you should use Shared Secrets if:

	You are not using a shared website hosting service.

	You have enabled SSL on your web server.

	You are using Encrypted Website Payments.

	You use the notify_url variable on each individual payment transaction.

Use postbacks for validation if:

	You rely on a shared website hosting service

	You do not have SSL enabled on your web server

	Swap out your button for a PayPalSharedSecretEncryptedPaymentsForm:

In views.py:

from paypal.standard.forms import PayPalSharedSecretEncryptedPaymentsForm

def view_that_asks_for_money(request):
 ...
 # Create the instance.
 form = PayPalSharedSecretEncryptedPaymentsForm(initial=paypal_dict)
 # Works just like before!
 form.render()

	Verify that your IPN endpoint is running on SSL - request.is_secure() should return True!

 Copyright 2014.
 Creado con Sphinx 1.3.1.

 Navegación

 	
 índice

 	
 siguiente |

 	
 anterior |

 	documentación de django-paypal - 0.2.5

Using PayPal Payments Pro (WPP)

	Using PayPal Payments Pro (WPP)
	Website Payments Pro models and helpers

	Website Payments Pro models and helpers

PayPal Payments Pro (or “Website Payments Pro”) is a more awesome version of
PayPal that lets you accept payments on your site. This is now documented by
PayPal as a Classic API [https://developer.paypal.com/webapps/developer/docs/classic/products/] and
should not be confused with the “PayPal Payments Pro (Payflow Edition)” which is
a newer API.

The PayPal Payments Pro solution reuses code from paypal.standard so you’ll
need to include both apps. django-paypal makes the whole process incredibly easy
to use through the provided PayPalPro class.

	Obtain PayPal Pro API credentials: login to PayPal, click My Account,
Profile, Request API credentials, Set up PayPal API credentials and
permissions, View API Signature.

	Edit settings.py and add paypal.standard and paypal.pro to your
INSTALLED_APPS and put in your PayPal Pro API credentials.

INSTALLED_APPS = [
 # ..
 'paypal.standard',
 'paypal.pro',
]
PAYPAL_TEST = True
PAYPAL_WPP_USER = "???"
PAYPAL_WPP_PASSWORD = "???"
PAYPAL_WPP_SIGNATURE = "???"

	Update the database

	Write a wrapper view for paypal.pro.views.PayPalPro:

In views.py:

from paypal.pro.views import PayPalPro

def nvp_handler(nvp):
 # This is passed a PayPalNVP object when payment succeeds.
 # This should do something useful!
 pass

def buy_my_item(request):
 item = {"paymentrequest_0_amt": "10.00", # amount to charge for item
 "inv": "inventory", # unique tracking variable paypal
 "custom": "tracking", # custom tracking variable for you
 "cancelurl": "http://...", # Express checkout cancel url
 "returnurl": "http://..."} # Express checkout return url

 ppp = PayPalPro(
 item=item, # what you're selling
 payment_template="payment.html", # template name for payment
 confirm_template="confirmation.html", # template name for confirmation
 success_url="/success/", # redirect location after success
 nvp_handler=nvp_handler)
 return ppp(request)

	Create templates for payment and confirmation. By default both templates are
populated with the context variable form which contains either a
PaymentForm or a Confirmation form.

payment.html:

<h1>Show me the money</h1>
<form method="post" action="">
 {{ form }}
 <input type="submit" value="Pay Up">
</form>

confirmation.html:

<!-- confirmation.html -->
<h1>Are you sure you want to buy this thing?</h1>
<form method="post" action="">
 {{ form }}
 <input type="submit" value="Yes I Yams">
</form>

	Add your view to urls.py, and add the IPN endpoint to receive callbacks
from PayPal:

from django.conf.urls import url, include

from myproject import views

urlpatterns = [
 ...
 url(r'^payment-url/$', views.buy_my_item),
 url(r'^some/obscure/name/', include('paypal.standard.ipn.urls')),
]

	Profit.

Alternatively, if you want to get down to the nitty gritty and perform some
more advanced operations with Payments Pro, use the paypal.pro.helpers.PayPalWPP class directly.

 Copyright 2014.
 Creado con Sphinx 1.3.1.

 Navegación

 	
 índice

 	
 siguiente |

 	
 anterior |

 	documentación de django-paypal - 0.2.5

 	Using PayPal Payments Pro (WPP)

Website Payments Pro models and helpers

	
class paypal.pro.helpers.PayPalWPP

	This class wraps the PayPal classic APIs, and sends data using Name-Value
Pairs (NVP). The methods all take a params dictionary, the contents of
which depend on the API being called. All parameter keys should be passed as
lowercase values (unless otherwise specified), not the mixed case/upper case
that is shown in PayPal docs.

For API parameters, see the PayPal docs for more information:

	Express Checkout APIs [https://developer.paypal.com/docs/classic/api/]

The method calls all return a paypal.pro.models.PayPalNVP object on
success. If an API call does not return ack=Success or
ack=SuccessWithWarning, a PayPalFailure exception is raised. The NVP
object is available as an attribute named nvp on this exception object.

	
__init__(request=None, params=BASE_PARAMS)

	Initialize the instance using an optional Django HTTP request object, and
an optional parameter dictionary which should contain the keys USER,
PWD, SIGNATURE and VERSION. If the parameter dictionary is not
supplied, these parameters will be taken from settings
PAYPAL_WPP_USER, PAYPAL_WPP_PASSWORD, PAYPAL_WPP_SIGNATURE and
the builtin version number.

	
createBillingAgreement()

	The CreateBillingAgreement API operation creates a billing agreement with
a PayPal account holder. CreateBillingAgreement is only valid for
reference transactions.

from paypal.pro.helpers import PayPalWPP

def create_billing_agreement_view(request):
 wpp = PayPalWPP(request)
 token = request.GET.get('token')
 wpp.createBillingAgreement({'token': token})

	
createRecurringPaymentsProfile()

	The CreateRecurringPaymentsProfile API operation creates a recurring
payments profile. You must invoke the CreateRecurringPaymentsProfile API
operation for each profile you want to create. The API operation creates a
profile and an associated billing agreement.

Note: There is a one-to-one correspondence between billing agreements
and recurring payments profiles. To associate a recurring payments profile
with its billing agreement, you must ensure that the description in the
recurring payments profile matches the description of a billing
agreement. For version 54.0 and later, use SetExpressCheckout to initiate
creation of a billing agreement.

	
doDirectPayment()

	The DoDirectPayment API Operation enables you to process a credit card
payment.

	
doExpressCheckoutPayment()

	The DoExpressCheckoutPayment API operation completes an Express Checkout
transaction. If you set up a billing agreement in your SetExpressCheckout
API call, the billing agreement is created when you call the
DoExpressCheckoutPayment API operation.

The DoExpressCheckoutPayment API operation completes an Express Checkout
transaction. If you set up a billing agreement in your
SetExpressCheckout API call, the billing agreement is created when you
call the DoExpressCheckoutPayment API operation.

	
doReferenceTransaction()

	The DoReferenceTransaction API operation processes a payment from a
buyer’s account, which is identified by a previous transaction.

from paypal.pro.helpers import PayPalWPP

def do_reference_transaction_view(request):
 wpp = PayPalWPP(request)
 reference_id = request.POST.get('reference_id')
 amount = request.POST.get('amount')
 wpp.doReferenceTransaction({'referenceid': reference_id, 'amt': amount})

	
getExpressCheckoutDetails()

	The GetExpressCheckoutDetails API operation obtains information about a
specific Express Checkout transaction.

	
getTransactionDetails()

	The GetTransactionDetails API operation obtains information about a
specific transaction.

	
manageRecurringPaymentsProfileStatus()

	The ManageRecurringPaymentsProfileStatus API operation cancels, suspends,
or reactivates a recurring payments profile.

	
setExpressCheckout()

	The SetExpressCheckout API operation initiates an Express Checkout
transaction. Returns an PayPalNVP object that has the token saved
in the .token attribute.

This token can be converted into a URL to redirect to using the helper
function express_enpoint_from_token in this module.

See the SetExpressCheckout docs [https://developer.paypal.com/docs/classic/api/merchant/SetExpressCheckout_API_Operation_NVP/]

	
updateRecurringPaymentsProfile()

	The UpdateRecurringPaymentsProfile API operation updates a recurring
payments profile.

	
paypal.pro.helpers.express_endpoint_for_token(token, commit=False)

	Returns the PayPal Express Checkout endpoint for a token. Pass
commit=True if you will not prompt for confirmation when the user
returns to your site.

	
class paypal.pro.models.PayPalNVP

	This stores the response returned by PayPal for any of the API calls above.

It has fields for all the common values. For other values, you can access
response_dict which is a dictionary-like object containing everything
PayPal returned.

 Copyright 2014.
 Creado con Sphinx 1.3.1.

 Navegación

 	
 índice

 	
 siguiente |

 	
 anterior |

 	documentación de django-paypal - 0.2.5

Tests

To run the django-paypal tests:

	Download the source from GitHub [https://github.com/spookylukey/django-paypal] or your fork.

	Create a virtualenv for the django-paypal project.

	Install tox:

pip install tox

	Run tox:

tox

This will run all the tests on all supported combinations of Django/Python.

 Copyright 2014.
 Creado con Sphinx 1.3.1.

 Navegación

 	
 índice

 	
 anterior |

 	documentación de django-paypal - 0.2.5

Release notes

Version 0.2.4/0.2.5

This fixes a bug with handling of dates. If you want to fix historic data in
your IPN tables, you need to apply a migration like the following:

-*- coding: utf-8 -*-
from __future__ import unicode_literals

import pytz
from datetime import datetime
from django.db import migrations
from django.utils import timezone

PAYPAL_DATE_FORMATS = [
 "%H:%M:%S %b. %d, %Y PST",
 "%H:%M:%S %b. %d, %Y PDT",
 "%H:%M:%S %b %d, %Y PST",
 "%H:%M:%S %b %d, %Y PDT",
]

def parse_date(datestring):
 for format in PAYPAL_DATE_FORMATS:
 try:
 return datetime.strptime(datestring, format)
 except (ValueError, TypeError):
 continue

def fix_ipn_dates(apps, schema_editor):
 PayPalIPN = apps.get_model("ipn", "PayPalIPN")

 for ipn in PayPalIPN.objects.all():
 # Need to recreate PayPalIPN.posted_data_dict
 posted_data_dict = None
 if ipn.query:
 from django.http import QueryDict
 roughdecode = dict(item.split('=', 1) for item in ipn.query.split('&'))
 encoding = roughdecode.get('charset', None)
 if encoding is not None:
 query = ipn.query.encode('ascii')
 data = QueryDict(query, encoding=encoding)
 posted_data_dict = data.dict()
 if posted_data_dict is None:
 continue

 for field in ['time_created', 'payment_date', 'next_payment_date', 'subscr_date', 'subscr_effective',
 'retry_at', 'case_creation_date', 'auction_closing_date']:
 if field in posted_data_dict:
 raw = posted_data_dict[field]
 naive = parse_date(raw)
 if naive is not None:
 aware = timezone.make_aware(naive, pytz.timezone('US/Pacific'))
 setattr(ipn, field, aware)
 ipn.save()

class Migration(migrations.Migration):

 dependencies = [
 ('ipn', '0003_auto_20141117_1647'),
]

 operations = [
 migrations.RunPython(fix_ipn_dates,
 lambda apps, schema_editor: None) # allowing reverse migration is harmless)
]

Version 0.2

	Introduced new, less confusing signals, and deprecated the old ones. This is
a bit of an API overhaul, but the migration path is clear, don’t worry!

	IPN:

Previously, there were IPN signals like payment_was_successful which
fired even if the payment_status on the IPN was 'Failed', and there
were other signals like payment_was_refunded to cover other specific
statuses, but not all of them. There were also bugs that meant that some
signals would never fire.

To sort out all these issues, and to future proof the design, the signals
have been reduced to:

	valid_ipn_received

	invalid_ipn_received

The ‘invalid’ signals are sent when the transaction was flagged - because of
a failed check with PayPal, for example, or a duplicate transaction ID. You
should never act on these, but might want to be notified of a problem.

The ‘valid’ signals need to be handled. However, you will need to check the
payment_status and other attributes to know what to do.

The old signals still exist and are used, but are deprecated. They will be
removed in version 1.0.

Please see Using PayPal Standard IPN.

	Pro:

This used signals even though they weren’t really appropriate.

Instead:

	If you are using PayPalWPP directly, the returned PayPalNVP objects
from all method should just be used. Remember that you need to handle
PayPalFailure exceptions from all direct calls.

	If you are using the PayPalPro wrapper, you should pass a callable
nvp_handler keyword argument.

Please see Using PayPal Payments Pro (WPP).

	You must explicitly set PAYPAL_TEST to True or False in your
settings, depending on whether you want production or sandbox PayPal. (The
default is True i.e. sandbox mode).

The sandbox() method on any forms is deprecated. You should use render
and set PAYPAL_TEST in your settings instead.

 Copyright 2014.
 Creado con Sphinx 1.3.1.

 Navegación

 	
 índice

 	documentación de django-paypal - 0.2.5

Índice

 _
 | C
 | D
 | E
 | G
 | M
 | P
 | S
 | U

_

 	

 	__init__() (método de paypal.pro.helpers.PayPalWPP)

C

 	

 	createBillingAgreement() (método de paypal.pro.helpers.PayPalWPP)

 	

 	createRecurringPaymentsProfile() (método de paypal.pro.helpers.PayPalWPP)

D

 	

 	doDirectPayment() (método de paypal.pro.helpers.PayPalWPP)

 	doExpressCheckoutPayment() (método de paypal.pro.helpers.PayPalWPP)

 	

 	doReferenceTransaction() (método de paypal.pro.helpers.PayPalWPP)

E

 	

 	express_endpoint_for_token() (en el módulo paypal.pro.helpers)

G

 	

 	getExpressCheckoutDetails() (método de paypal.pro.helpers.PayPalWPP)

 	

 	getTransactionDetails() (método de paypal.pro.helpers.PayPalWPP)

M

 	

 	manageRecurringPaymentsProfileStatus() (método de paypal.pro.helpers.PayPalWPP)

P

 	

 	PayPalNVP (clase en paypal.pro.models)

 	

 	PayPalWPP (clase en paypal.pro.helpers)

S

 	

 	setExpressCheckout() (método de paypal.pro.helpers.PayPalWPP)

U

 	

 	updateRecurringPaymentsProfile() (método de paypal.pro.helpers.PayPalWPP)

 Copyright 2014.
 Creado con Sphinx 1.3.1.

 _static/comment-bright.png

_static/down.png

_static/file.png

_static/plus.png

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/ajax-loader.gif

search.html

 Navegación

 		
 índice

 		documentación de django-paypal - 0.2.5 »

 Búsqueda

 Por favor, active JavaScript para habilitar la funcionalidad
 de búsqueda.

 Este es el diálogo de búsqueda. Introduce los términos en el
 diálogo siguiente y pulsa "buscar". Note que el asistente buscará
 automáticamente todas las palabras. Las páginas que contengan
 menos palabras no aparecerán en la lista de resultados.

 © Copyright 2014.
 Creado con Sphinx 1.3.1.

_static/comment-close.png

updatedb.html

 Navegación

 		
 índice

 		documentación de django-paypal - 0.2.5 »

Update the database

django-paypal uses South for migrations for Django < 1.7, and the built in
Django migrations framework for Django >= 1.7.

To update your database:

		For Django < 1.7:

		Ensure South is installed if it isn’t already:

		Do:

pip install 'South>=1.0.1'

		Add ‘south’ to your INSTALLED_APPS setting.

		Run the following to install South tables:

./manage.py syncdb

		Then for each time you install or upgrade django-paypal, run:

./manage.py migrate

		For Django >= 1.7, do:

You need to uninstall South first (e.g. pip uninstall South).

./manage.py migrate

Upgrading from very old versions

If you using Django < 1.7 and are upgrading from a very old version (before
0.1.1) that wasn’t using South, you will have to use --fake - see
http://south.readthedocs.org/en/latest/commands.html?highlight=fake

It will probably look something like:

./manage.py migrate ipn --fake --initial
./manage.py migrate pdt --fake --initial
./manage.py migrate pro --fake --initial
./manage.py migrate ipn
./manage.py migrate pdt
./manage.py migrate pro

depending on what apps you have installed.

Please also see upgrade notes in the CHANGES file: https://github.com/spookylukey/django-paypal/blob/master/CHANGES.rst

Upgrading to Django 1.7

If you installed django-paypal with an older version of Django, you will have
been using South to handle database migrations. Due to the new built-in database
migration framework in Django 1.7, the upgrade procedure is slightly
complicated.

The recommended upgrade procedure is:

		Before upgrading to Django 1.7, first upgrade django-paypal to the latest
version and run migrations as above (including deploying to your production
environment and running migrations there).

		Then upgrade Django to 1.7, and run the following as appropriate for your
situation:

./manage.py migrate ipn --fake
./manage.py migrate pdt --fake
./manage.py migrate pro --fake

In this way, you can avoid running equivalent migrations twice (the South versions
and the Django built-in versions).

 © Copyright 2014.
 Creado con Sphinx 1.3.1.

_static/minus.png

_static/up-pressed.png

